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Abstract In complex systems with at least three independent components, one-phase
normal states may transform into exotic states. The former are represented by a non-
branching tree, while the latter are represented by a branching tree. The transformation
takes place through a non-congruent two-phase equilibrium. Until recently, researchers
using this process were able to obtain stable quasicrystals with three, four, or more
components. It therefore seemed justified to suppose that exotic states constituted qua-
sicrystals. In 2000, however, Tsai’s team discovered two stable binary quasicrystals
formed through a congruent process. Virtually no reports on other stable binary qua-
sicrystals have been obtained since that discovery despite considerable effort on the
part of researchers. The graph-based representation of equilibrium states rules out the
existence of exotic one-phase equilibria (i.e., stable quasicrystals) in binary systems.
A question arises: What types of systems did Tsai discover?.
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1 Introduction

Previously in this work, it was shown that the values of the Gibbs function (1):

G ≡ G(p, T, x1, x2, . . . , x̃C ) ≡ H − T S (1)

J. Turulski
16-035 Czarna Wies Koscielna, Poland

J. Turulski (B)
Chemistry Institute, University at Bialystok, ul. Hurtowa 1, 15-399 Białystok, Poland
e-mail: jan.turulski@gmail.com

123



518 J Math Chem (2015) 53:517–526

which determines the location of the thermodynamic equilibrium state in a closed
isotherm–isobar system, where p denotes pressure, T denotes temperature, and the
molar fraction x1, x2, . . . , x̃C denotes chemical composition (the tilde over the last
value means that for closed systems: x̃C = 1 − (x1 + x2 + · · · + xC−1)), form a two-
dimensional piecewise smooth topological manifold (2-D) [1]. This occurs because
C−1 constraints, i.e., equations derived from the Gibbs–Duhem theorem (viz. Equation
(11) in the previous part of this work), are imposed onto a set of arguments with
C + 1 dimensions (C − 1 molar fractions plus 2 for pressure and temperature). This
manifold is two-dimensional regardless of how complex the thermodynamic system
is. Consequently, the values of two geodesic coordinates determine the location of
a point on this manifold. Let X, Y denote the geodesic coordinates. There likely
exist many methods of laying out geodesic lines on a Gibbs function 2-D topological
manifold. In our publications, X equalled molar enthalpy H (1) and Y equalled -TS,
where S denoted molar entropy [1]. The Gibbs function can be written using geodesic
coordinates:

G(k)(X, Y ) =
{

X (k) + Y (k) C = 1∑C
i=1 xiμ

(k)
i ≡ ∑C

i=1 g(k)
i

(
X (k), Y (k)

)
C > 1

(2)

where the superscript k = 1, 2, . . ., P enumerates individual phases of the system and
μi , gi denote the chemical potential (3) and the weighted chemical potential (4) of
the i-th component, respectively:

μ
(k)
i =

(
∂G(k)

∂xi

)
p,T,x j

(3)

g(k)
i =

(
∂G(k)

∂ ln xi

)
p,T,x j

(4)

Individual smooth sections of the topological manifold correspond to the appropri-
ate phases of the system [1]. These sections are glued along the phase transformation
line. One pair of values X, Y corresponds to each point on the smooth part of the
section of the manifold. Two pairs of values of geodesic coordinates X, Y correspond
to a point located on the gluing line (one pair is located on one section and the other
is located on the other glued section).

Let the thermodynamic equilibrium state be represented by the set of parameters:

χ0 ≡ (p0, T0, x10, x20, . . . , x̃C0) (5)

The mapping of this state onto the reference state

χ∗ ≡ (p∗, T ∗, x∗
1 , x∗

2 , . . . , x̃∗
C ), (6)

which, as has been shown previously in this work, is an invariant state, creates the set
of C + 1 points R(k)

i on the surface of the manifold [1], where:
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R(k)
i =

(
X (k)(χi ), Y (k)(χi )

)
. . . i = 1, 2, . . . , C + 1 (7)

and the i-th set of parameters χi denotes the set for reference state χ∗, the value of
the appropriate parameter from the set χ0 is located at position i in the reference state
(viz. Equation (18) in the previous part of this work). Each point R(k)

i constitutes one
degree of freedom. The value of the Gibbs function in the equilibrium state, calculated
relative to the reference state, is equal to the integral of dG(k) over the minimal path
connecting the individual degrees of freedom, where

dG(k) =
⎧⎨
⎩

d X (k) + dY (k) C = 1∑C
i−1

[(
∂g(k)

i
∂ X (k)

)
d X (k) +

(
∂g(k)

i
∂Y (k)

)
dY (k)

]
C > 1

(8)

Either of the following may be true for this integration:

(a) None of the C + 1 degrees of freedom lies on the phase transformation line;
(b) At least one degree of freedom lies on the phase transformation line(s).

In the first case, the integration path creates a connected graph without cycles, i.e.,
a tree. Each of the C edges connecting the individual degrees of freedom (tree vertices)
is equal to the weighted chemical potential (4) of the appropriate component in the
system. The state graph is located on a smooth section of the topological manifold. This
manifold represents a phase of the system and constitutes the only face of the graph.
Two types of one-phase thermodynamic states can be distinguished for systems with
three or more components. The first type corresponds to the one for unary and binary
systems represented by non-branching trees. The second type corresponds to systems
represented by branching trees and usually comprises many subtypes. Figure 1a shows
state graphs for a one-phase quaternary system. States represented by non-branching
trees have been termed normal states (graph a0 in Fig. 1a), while those represented by
branching trees have been termed exotic states (graphs a1 and a2 in Fig. 1a).

In the second case, the degree(s) of freedom located on the phase transformation
line represent(s) pairs of glued vertices connected with one or more edges. The gluing
occurs because points with different geodesic coordinates R(k)

i , R(l)
i , as long as they

are located on the phase transformation line, represent the same geometric location.
As a result of the degrees of freedom having been glued together, one or more cycles
appear by means of integration. Thus, the state graph will include cycles or, in special
cases, loops. Previous in this work it has been shown that the individual faces of such a
graph represent the appropriate phases of the system. Consequently, the composition of
a given phase is determined by a sequence of edges (i.e., weighted chemical potentials
(4) of individual components) that form a given face. In other words, the situation cor-
responds to the states of multi-phase systems. Figure 1b shows several two-phase state
graphs for systems with C = 4. Note that the two-phase state graphs include cycles
with C edges that represent a state in which both phases are qualitatively or even quan-
titatively identical (graph b0 in Fig. 1b). Equilibrium processes represented by such
graphs include congruent processes (if the phase composition is quantitatively identi-
cal) and non-congruent processes (if the phase composition is quantitatively different).
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Fig. 1 Example state graphs for quaternary systems. For clarity, the edges representing individual compo-
nents (A, B, C, and D) are marked with the same type of a line. a One-phase state graphs (a0, a1, a2). b
Two-phase state graphs (b0, b1, b2, b3, b4, b5, b6, b7, b8); the two-parameter vertices Ri j were created
by gluing the vertices Ri and Rj in the appropriate graphs from Fig. 1a. The gluing (as well as the taking
apart) of vertices represents a phase transformation

The remaining two-phase state graphs represent states in which the two phases have
different compositions. These graphs only represent non-congruent processes (graphs
b1, b2, b3, b4, b5, and b6 in Fig. 1b). Of course, one-phase systems (normal and
exotic) will, in the appropriate conditions, transform into two-phase systems, which
in turn can be transformed back into one-phase systems, usually different from the
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original systems. Such transformations are applied in practice to create new types of
phases that often display an atypical arrangement of molecules. This is why it is worth
analysing the conditions that graph theory imposes onto phase transformations.

2 Theory

In 1984, Shechtman’s team discovered phases forming in Al–Mn alloys that dis-
played a rotational symmetry forbidden for three-dimensional structures [2]. How-
ever, these phases, termed quasicrystals, were uninteresting from the perspective of
thermodynamics for the simple reason that they were thermodynamically unstable.
Nonetheless, researchers later noticed that adding a third component or more into
the metastable quasicrystals stabilised them. The first thermodynamically stable qua-
sicrystal Al65Cu20Fe15, discovered by Tsai’s team [3], began a series of investigations
that resulted in the discovery of numerous other stable ternary and quaternary qua-
sicrystals. To date, researchers have described quasicrystals that form in such systems
as Al–Ni–Co, Al–Cu–Co, Al–Cu–Co–Si, Al–Mn–Pd, Al–Li–Cu, Al–Pd–Mn, or Zn–
Mg–RE (RE=La, Ce, Nd, Sm, Gd, Dy, or Y) [4–6]. The single fact that such phases are
thermodynamically stable is a sufficient to motivation for investigating them from the
perspective of phenomenological thermodynamics. From the discovery in 1987 until
2000, researchers observed that stable quasicrystals form by means of non-congruent
solidification in systems with three or more components [7–10]. Graph-based repre-
sentation of states describes phase transformations through the gluing or taking apart of
state graph vertices. Let us consider such a transformation occurring in quaternary sys-
tems (Fig. 2). A quaternary liquid, the state of which is represented by a non-branching
tree, transforms into one of six possible two-phase states (b0, b1, b2, b3, b6, or b7)
when cooled to an appropriate temperature, as Fig. 2 shows. Some of these two-phase
states transform into exotic one-phase states represented by either of the branching
trees a1 or a2 when an appropriate change in thermodynamic parameters is induced.
Note that exotic states are created only in non-congruent processes. A congruent equi-
librium represented by a cycle with four edges (b0) can only transform into a one-phase
normal state (a0), and never into an exotic state. On a side note, one of the five non-
congruent equilibria, b7, is an exception: it does not transform into an exotic state, in
contrast to a vast majority of such equilibria. Notice that this two-phase exception, just
as the congruent equilibrium graph b0, is represented by graphs that cannot form from
exotic state graphs (a1 and a2). This constitutes an argument in favour of the assump-
tion that in thermodynamics, the state of quasicrystals is represented by a branching
tree. A second argument in favour of this proposal is the fact that stable quasicrystals,
just like branching trees, are observed in systems with at least three components. In the
more than 10 years since the discovery of stable quasicrystals, the thesis that the ther-
modynamic state of these systems is represented by a branching tree seemed correct.
No stable quasicrystals in binary systems were found despite extensive research. Such
research was well-justified: phase diagrams for binary systems are better known, and
many more of them were found than diagrams for more complex systems. Researchers
attempted to explain the lack of stable binary quasicrystals by conducting model theo-
retical studies [11–13]. Widom et al. [11] noticed that ‘a binary Lennard-Jones alloy in
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Fig. 2 State graphs that describe the transformation of the one-phase quaternary normal state a0 into an
exotic one-phase state (a1 or a2). The transformation takes place through two-phase states for which state
graphs are created by gluing a pair of vertices in a non-branching normal state tree. The non-congruent
majority of two-phase states (b1, b2, b3, b6) may transform into an exotic one-phase state (a1 or a2). Such
a transformation is represented by the taking apart of the appropriate vertices in a two-phase system graph.
The two-phase congruent state b0 and the exceptional non-congruent state b7 do not transform into exotic
states. Such two-phase states cannot be created from one-phase exotic states (a1 and a2)

two dimensions exhibits an entropically stabilized quasicrystal state’, i.e., ‘quasicrys-
tal compounds exhibit crystalline states at low temperatures, then transform into the
quasicrystal at intermediate T before melting at higher temperatures’. Of course, the
results of model studies on 2-D systems can differ considerably from those on 3-D
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systems. Nonetheless, Widom et al. [11] made the important observation that entropy
is a stabilising factor for quasicrystals. Cataldo et al. [12,13] analysed the stability of
real, i.e., three-dimensional, binary quasicrystal structures using ‘molecular-dynamic
simulation’ and ‘generalized effective liquid approximation’. Their study indicated
that ‘hard-sphere icosohedral quasilattice is metastable with respect to the crystal and
fluid structures’. The series of theoretical study results that were unfavourable to the
existence of stable binary quasicrystals ended in 2000, when Tsai’s team [14] pub-
lished an article on their discovery of two ‘stable binary icosohedral quasicrystals’.
One of these crystals was composed of Cd5.7Yb, the other of Cd5.7Ca. Atypically, the
systems formed through congruent solidification. Tsai’s discovery seemed to dispel
the myth that stable quasicrystals must comprise at least three elements. The great
number of known phase diagrams for binary systems created the illusion that the road
to synthesising new stable binary quasicrystals had opened. In time, the fact that it
was merely an illusion became apparent. Since 2000, hundreds of binary systems have
been researched that could potentially form stable quasicrystals. Unfortunately, even
when quasicrystal phases formed in some of these systems, they were metastable.
It was only in 2010 that Goldman’s team reported [15] synthesising a stable qua-
sicrystal composed of Sc12Zn88. In sum, within 15 years, only three, rather than ‘a
great number’, of quasicrystals were found. One can hardly avoid making the ironic
remark that stable quasicrystals, if they exist, are extremely rare. Thus, the following
questions arise:

• Why does configuration entropy (especially the entropy of phason fluctuation) so
rarely and so poorly constitute a stabilising factor for binary quasicrystal phases
in moderate temperatures, despite the claims by Widom et al. [11,16–18]?

• Why does entropy constitute a stabilising factor for quasicrystals in three systems
but not in other systems?

• Do Tsai’s and Goldman’s discoveries [14,15] of stable quasicrystals in binary
systems bring an end to the thesis that the states of quasicrystals are represented
by branching trees (which, it needs to be emphasised, appear only for systems with
at least three components)?

Answering these questions requires us to accept that the stable binary quasicrystals
discovered by Tsai and Goldman [14,15] are not, in fact, binary! None of the truly
binary quasicrystals, beginning with the Al-Mn discovered by Shechtman [2], are sta-
ble, while the stable quasicrystals discovered by Tsai and Goldman are not actually
binary. This is due to the isotope composition of natural elements used for synthe-
sising quasicrystals. Some of these elements, such as Al, Mn, and Sc, are composed
almost entirely of a single isotope. Other elements, such as Cd, Yb, and Zn, are in
their natural state composed of several isotopes with similar ratios. For instance, nat-
ural Zn is a mixture of three isotopes in the 0.49:0.28:0.19 proportion; Cd is mixture
of as many as six isotopes in the 0.13:0.13:0.24:0.12:0.29:0.07 proportion; and Yb
primarily includes five isotopes in the 0.14:0.22:0.16:032:0.13 proportion [19]. Thus,
the three stable ‘binary’ quasicrystals are, in fact, quasicrystals with 11, 7, and 4 com-
ponents, respectively. In other words, they constitute pseudobinary systems; the truly
binary quasicrystals, such as the Al–Mn discovered by Shechtman’s team, are only
metastable. The isotope composition of a given thermodynamic phase has a negligi-
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Table 1 Metals with a melting
point lower than about 1,500 K
that in their natural state
comprise at least two isotopes
with comparable shares

The second column provides the
fractions of individual isotopes,
beginning with the lightest one.
The third column provides the
total number of such isotopes for
a given element. The table was
created based on data in [16]

E [E1] : [E2] : . . . N(E)

Sb 0.57:0.43 2

Ce 0.88:0.11 2

Eu 0.48:0.52 2

Ga 0.60:0.40 2

In 0.04:0.96 2

Li 0.07:0.93 2

Cu 0.69:0.31 2

K 0.93:0.07 2

Rb 0.72:0.28 2

Ag 0.52:0.48 2

Tl 0.30:0.70 2

Si 0.92:0.05:0.03 3

Mg 0.79:0.10:0.11 3

Ni 0.68:0.26:0.04 3

Pb 0.24:0.22:0.52 3

Ca 0.97:0.02:0.01 3

Zn 0.49:0.28:0.04:0.19 4

Ba 0.02:0.07:0.08:0.11:0.72 5

Gd 0.15:0.20:0.16:0.25:0.22 5

Ge 0.20:0.27:0.08:0.37:0.08 5

Yb 0.03:0.14:0.22:0.16:0.32:0.13 6

Cd 0.13:0.13:0.24:0.12:0.29:0.07 6

Hg 0.10:0.17:0.23:0.13:0.30:0.07 6

Sn 0.15:0.08:0.24:0.09:0.33:0.05:0.06 7

Nd 0.27:0.12:0.24:0.08:0.17:0.06:0.06 7

Sm 0.03:0.15:0.11:0.14:0.07:0.27:0.23 7

ble effect on energy differences between phases due to the small difference in mass
between individual isotopes. On the other hand, isotope composition has a significant
effect on the entropy of individual phases. Of course, the entropies of mixing for both
the crystal phase and the quasicrystals phase are the same. However, configuration
and vibrational entropies may differ between the two phases. For crystal structures,
the number of equivalent energy configurations that differ in the arrangement of the
individual isotopes of a given element is much lower than for less structured entities
(quasicrystals, liquids, glass, etc.). Therefore, it is obvious that isotope composition,
by means of configuration entropy, is a stabilising factor for the quasicrystal phase
relative to the crystal phase. It seems peculiar that such an effect (the influence of
isotope composition on the thermodynamic stability of quasicrystals) has not been
observed thus far. The issue of whether the difference in entropy would suffice to
allow, in certain thermodynamic conditions, the quasicrystal phase to stabilise rela-
tive to the crystal phase should be resolved through theoretical calculations for model
binary systems. These calculations should take into account that one or two compo-
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nents have different isotope compositions. Regardless of when such calculations are
going to be conducted, it can already be stated that the experimental discovery of three
stable pseudobinary quasicrystals confirms the influence of isotope composition on
phase stability. The proposal that isotope effects are responsible for the thermody-
namic stability in pseudobinary quasicrystals leads to a considerable decrease in the
number of elements that can form such phases. Table 1 lists about 20 elements with
a melting point lower than about 1,500 K. The isotope composition of these elements
allows one to hope that a pair of these elements may, with good likelihood, form sta-
ble pseudobinary quasicrystals. The phrase ‘good likelihood’ means one may expect
that synthesising stable quasicrystals could be easier using elements listed in the table
rather than such elements as Al, Mn, or Sc, i.e., those that comprise one isotope in their
natural state. Initially, scientists who investigated quasicrystals considered the poten-
tial existence of unary quasicrystals. Today, we realise that quasicrystals constitute
systems with at least three components, and as a result, the existence of such phases
seems absurd. However, if we replace the term unary with pseudounary, the notion
becomes less absurd. Thus, while searching for stable unary quasicrystals is futile, the
futility diminishes if the search is conducted by investigating phase transformations
in metals that in their natural state have at least three isotopes with high shares.

3 Conclusions

1. Stable quasicrystals may form through non-congruent processes in systems with
at least three components. In phenomenological thermodynamics, branching tress
represent the state of such phases.

2. Such a representation of the thermodynamic state of quasicrystals supports the
hypothesis that the quasicrystal arrangement of matter may constitute the ground
state in some complex systems, i.e., it may be stable at 0 K.

3. The three stable binary quasicrystals obtained by Tsai and Goldman [11,12] are,
when the isotope composition of the elements is taken account, quasicrystals with
11, 7, and 4 components, respectively, i.e., they constitute pseudobinary phases.

4. Isotope compositions are a stabilising factor for the three quasicrystals obtained
by Tsai and Goldman by means of configuration entropy and vibrational entropy.

5. Difficulties in obtaining stable “binary” quasicrystals may have resulted from the
fact that a large number of the researched systems were truly binary, i.e., composed
of two metals with only one isotope each (e.g., Al–Mn), which cannot form stable
quasicrystals.

Appendix

In August 2013 team of Professor A.I. Goldman published [20] information about the
synthesis of 7 stable quasicrystals in systems RE–Cd, where RE=Gd, Tb, Dy, Ho,
Er, Tm, Y. Easy to see that these systems are pseudobinary (respectively: 11, 7, 10, 7,
10, 7, 7 components), so in accordance with the thesis of this work may create a stable
quasicrystals. Professors A.I. Goldman and P.C. Canfield thanks for the information
on their recent research [20].

123



526 J Math Chem (2015) 53:517–526

References

1. J. Turulski, J. Math. Chem. doi:10.1007/s10910-014-0439-5
2. D. Shechtman, I. Blech, D. Gratias, J. Cahn, Phys. Rev. Lett. 53, 1951 (1984)
3. I.P. Tsai, A. Inoue, T. Masumoto, J. Mater. Sci. Lett. 6, 1403 (1987)
4. I.P. Tsai, A. Inoue, T. Masumoto, Jpn. J. Appl. Phys. 27, 1587 (1988)
5. A.P. Tsai, MRS Bull. 22, 40 (1997)
6. A.P. Tsai, Acc. Chem. Res. 36, 31 (2003)
7. P. Gille, B. Bauer, M. Hahne, A. Smontara, J. Dolinsek, J. Cryst. Growth 318, 1016 (2011)
8. R. Popescu, A. Jianu, M. Manciu, R. Nicula, R. Manaila, J. Alloys Compd. 221, 240 (1995)
9. S. Katrych, Th Weber, M. Kobas, L. Massuger, L. Palatinus, G. Chapuis, W. Steurer, J. Alloys Compd.

428, 164 (2007)
10. L. Barbier, D. Gratias, Prog. Surf. Sci. 75, 177 (2005)
11. H.K. Lee, R.H. Swendsen, M. Widom, Phys. Rev. B 64, 224201 (2001)
12. H.M. Cataldo, C.F. Tejero, Phys. Rev. B 52, 13269 (1995)
13. H.M. Cataldo, Philos. Mag. B 79, 1603 (1999)
14. A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura, T.J. Sato, Nature 408, 537 (2000)
15. A.I. Goldman, A. Kreyssig, S. Nandi, M.G. Kim, M.L. Caudle, P.C. Canfield, Philos. Mag. 91, 2427

(2011)
16. W. Steurer, in Ninth International Conference on Quasicrystals, Stable clusters in quasicrystals - fact

or fiction? Ames (2005)
17. Marc de Boissieu, in Ninth International Conference on Quasicrystals, Stability of Quasicrystals:

Energy, Entropy, and Phason Modes. Ames University, Ames (2005)
18. Ch. Henley, in Ninth International Conference on Quasicrystals, Clusters, Phason Elasticity, and

Entropic Stabilization: A Theory Perspective. Ames (2005)
19. J. Emsley, The Elements, 2nd edn. (Clarendon Press, Oxford, 1991)
20. A.I. Goldman, T. Kong, A. Kreyssig, A. Jesche, M. Ramazanoglu, K.W. Dennis, S.L. Bud’ko,

P.C. Canfield, Nat. Mater. 12, 714 (2013)

123

http://dx.doi.org/10.1007/s10910-014-0439-5

	Dimension of the Gibbs function topological manifold: 2. Thermodynamically stable binary quasicrystals: Reality or artefact?
	Abstract
	1 Introduction
	2 Theory
	3 Conclusions
	Appendix
	References


